Saturday, April 4, 2015

Start Revit Structure Now or Never


Building design and construction software
Revit® building design software is specifically built for Building Information Modeling (BIM), with features for architectural design, MEP and structural engineering, and construction. Bring ideas from concept to construction with a model-based approach. Revit is available only as part of Building Design Suite 2015 Premium and Ultimate.


Thursday, April 2, 2015

Building information modeling

Building information modeling (BIM) is a process involving the generation and management of digital representations of physical and functional characteristics of places. Building information models (BIMs) are files (often but not always in proprietary formats and containing proprietary data) which can be exchanged or networked to support decision-making about a place. Current BIM software is used by individuals, businesses and government agencies who plan, design, construct, operate and maintain diverse physical infrastructures, such as water, waste water, electricity, gas, refuse and communication utilities, roads, bridges and ports, houses, apartments, schools and shops, offices, factories, warehouses and prisons.
BIM is a relatively new technology in an industry typically slow to adopt change. Yet many early adopters are confident that BIM will grow to play an even more crucial role in building documentation.
Proponents claim that BIM offers:
  1. Improved visualization
  2. Improved productivity due to easy retrieval of information
  3. Increased coordination of construction documents
  4. Embedding and linking of vital information such as vendors for specific materials, location of details and quantities required for estimation and tendering
  5. Increased speed of delivery
  6. Reduced costs
BIM also contains most of the data needed for building energy performance analysis. The building properties in BIM can be used to automatically create the input file for building energy simulation and save a significant amount of time and effort. Moreover, automation of this process reduce errors and mismatches in the building energy simulation process.
Green Building XML (gbXML) is an emerging schema, a subset of the Building Information Modeling efforts, focused on green building design and operation. gbXML is used as input in several energy simulation engines.[39] With the development of modern computer technology, a large number of building energy simulation tools are available. When choosing which simulation tool to use, the user must consider the tool's accuracy and reliability, considering the building information they have at hand, which will serve as input for the tool. Yezioro, Dong and Leite developed an artificial intelligence approach towards assessing building performance simulation results and found that more detailed simulation tools have the best simulation performance in terms of heating and cooling electricity consumption within 3% of mean absolute error.
Explorations are underway to pair computer network users' personal, private and public authentication choices, geographic mapping systems and evolving cloud computing security architecture models, together, to offer customers of geospatial securitization services intuitive new ways to organize their personal, private and public applications and storage. For individuals, businesses and government authorities who generate and manage building information, new ways to discover, share and work on data, within the context of particular places on earth, will be offered. David Plager, AIA, conjectures that today's web will give way to tomorrow's geo-web where data will be structured first by place (e.g. a postal address) and then by space (Personal (one user), Private (a group of users) and Public (all users)). 

Wednesday, April 1, 2015

Structural engineering

Structural engineering is a field of engineering dealing with the analysis and design of structures that support or resist loads.
Structural engineers are most commonly involved in the design of buildings and large non-building structures but they can also be involved in the design of machinery, medical equipment, vehicles or any item where structural integrity affects the item's function or safety. Structural engineers must ensure their designs satisfy given design criteria, predicated on safety (i.e. structures must not collapse without due warning) or serviceability and performance (i.e. building sway must not cause discomfort to the occupants).

Structural engineering theory is based upon applied physical laws and empirical knowledge of the structural performance of different materials and geometries. Structural engineering design utilizes a number of simple structural elements to build complex structural systems. Structural engineers are responsible for making creative and efficient use of funds, structural elements and materials to achieve these goals

History of Structural Engineering

Structural engineering dates back to 2700 B.C.E. when the step pyramid for Pharaoh Djoser was built by Imhotep, the first engineer in history known by name. Pyramids were the most common major structures built by ancient civilizations because the structural form of a pyramid is inherently stable and can be almost infinitely scaled (as opposed to most other structural forms, which cannot be linearly increased in size in proportion to increased loads).
However, it is important to note that the structural stability of the pyramid is not primarily a result of its shape. The integrity of the pyramid is intact as long as each of the stones is able to support the weight of the stone above it. The limestone blocks were taken from a quarry near the build site. Since the compressive strength of limestone is anywhere from 30 to 250 MPa (MPa = Pa * 10^6), the blocks will not fail under compression.Therefore the structural strength of the pyramid stems from the material properties of the stones from which it was built rather than the pyramid's geometry.
Throughout ancient and medieval history most architectural design and construction was carried out by artisans, such as stone masons and carpenters, rising to the role of master builder. No theory of structures existed, and understanding of how structures stood up was extremely limited, and based almost entirely on empirical evidence of 'what had worked before'. Knowledge was retained by guilds and seldom supplanted by advances. Structures were repetitive, and increases in scale were incremental.

No record exists of the first calculations of the strength of structural members or the behavior of structural material, but the profession of structural engineer only really took shape with the Industrial Revolution and the re-invention of concrete (see History of Concrete). The physical sciences underlying structural engineering began to be understood in the Renaissance and have since developed into computer-based applications pioneered in the 1970s.